同步电机模型的MATLAB仿真
摘要
采用电力电子变频装置实现电压频率协调控制,改变了同步电机历来的恒速运行不能调速的面貌,使它和异步电机一样成为调速电机大家庭的一员。本文针对同步电机中具有代表性的凸极机,在忽略了一部分对误差影响较小而使算法复杂度大大增加的因素(如谐波磁势等),对其内部电流、电压、磁通、磁链及转矩的相互关系进行了一系列定量分析,建立了简化的基于abc三相变量上的数学模型,并将其进行派克变换,转换成易于计算机控制的d/q坐标下的模型。再使用MATLAB中用于仿真模拟系统的SIMULINK对系统的各个部分进行封装及连接,系统总体分为电源、abc/dq转换器、电机内部模拟、控制反馈四个主要部分,并为其设计了专用的模块,同时对其中的一系列参数进行了配置。系统启动仿真后,在经历了一开始的振荡后,各输出相对于输出时间的响应较稳定。
关键词:同步电机 d/q模型 MATLAB SIMULINK 仿真。
The Simulation Platform of Synchronous Machine by MATLAB
Abstract:
The utilization of transducer realizes the control of voltage’s frequency. It changes the situation that Synchronous Machine is always running with constant speed. Just like Asynchronous Machine, Synchronous machine can also be viewed as a member of the timing machine. This thesis intends to aim at the typical salient pole machine in Synchronous Machine. Some quantitative analysis are made on relations of salient pole machine among current, voltage, flux, flux linkage and torque, under the condition that some factors such as harmonic electric potential are ignored. These factors have less influence on error but greatly increase complexity of arithmetic. Thus, simplified mathematic model is established on the basis of a, b, c three phase variables. By the Park transformation, this model is transformed to d, q model which, is easy to be controlled by computer. Simulink is used to masking and linking all the parts of the system. The system can be divided into four main parts, namely power system, abc/dq transformation, simulation model of the machine and feedback control. Special blocks are designed for the four parts and a series of parameters in these parts are configured. The results of simulation show that each output has a satisfactory response when there is disturbance.
Key Words: Synchronous Machine Simulation d/q Model MATLAB SIMULINK
目 录
世界工业进步的一个重要因素是过去几十年中工厂自动化的不断完善。在上个世纪70年代初叶,席卷全球世界先进工业国家的石油危机,迫使他们投入大量人力和财力去研究高效高性能的交流调速系统,期望用它来节约能源。经过十年左右的努力,到了80年代大见成效,高性能交流调速系统应用的比例逐年上升,能源危机从而得以缓解。从此以后,高性能交流电机的研究从未再停止过。
而且众所周知,电机的数学模型是多变量、强耦合的非线性系统。对非线性系统中的混沌和分支现象的研究是当前非线性科学研究的热点,在理论上、计算机仿真以及实验上都有了一些研究成果,提出了一些方法。但要从理论上研究一个非线性动力系统,一般比较困难,我们往往希望在保持其动力学特性的基础上,将其简化。要简化一个动力系统,有两条途径:一是减少系统的维数;二是消除非线性[1]。